If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2^3-2z^2+16z=0
We add all the numbers together, and all the variables
-2z^2+16z+8=0
a = -2; b = 16; c = +8;
Δ = b2-4ac
Δ = 162-4·(-2)·8
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{5}}{2*-2}=\frac{-16-8\sqrt{5}}{-4} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{5}}{2*-2}=\frac{-16+8\sqrt{5}}{-4} $
| 100x-x=19.9 | | 6(3+2n)=114 | | 3d+2=-8 | | 5/10=24/n | | -4x+1=-x+(-4-3x)+5 | | 4x-9=86 | | N=5m2 | | 5a-27=-28 | | x+15=8-2x | | x/2+13=21 | | 4p+7+7p=84 | | 2w+32=4(w+4) | | 2/3b=-32/39 | | n/9=2/8 | | 2/x+8=20 | | 2(4x+2)=10(x+12) | | 3(x+4)+2x=34 | | 7/n=21/n | | 7(v-2)=-8v+1 | | 0.5(8x-10)=7 | | 3h+2h-1=29 | | u+4=-2 | | -7x-33=2(x+6) | | -1+4x=-4=+13x | | 7=3+u | | 1/4=n/28 | | 36.9=3.7b-36.9 | | 4x-9=109+2x | | -4=8(v-8)+2v | | 2h+2(2h+40=26 | | 3x=14x-12 | | 3y+3(y-4)=-30 |